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Abstract：Long-wavelength VCSELs on an InP substrate was designed and fabricated with an active layer of 1550
nm. The top Distributed Bragg Reflection（DBR）mirror system has been constructed by fabricating 4. 5 pairs of
SiO2/Si top DBRs. The threshold current was 20 mA and maximum output power around 7 μW under continuous
wave（CW）operation at room temperature. More importantly，the lasing spectrum is 1554 nm and the full width
at half maximum is 3 nm.
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面向长距离通讯1 550 nm垂直腔面发射激光器的研究
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摘要：采用 InP基衬底设计并制备了1550 nm垂直腔面发射激光器。采用混合镜面布拉格发射镜，其中顶部采

用 4.5对硅和二氧化硅的介电布拉格反射镜，同时采用隧道结的方式降低 p层载流子吸收。制备出阈值电流

在 20 mA，室温直流下输出光功率为 7 μW，激射波长为 1554 nm，激射谱半高宽为 3 nm的垂直腔面发射激

光器。
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Introduction
Vertical cavity surface emitting lasers（VCSELs）

have long been predicted as economic laser alternatives
for various applications such as optical communications，
sensing and imaging ［1-3］. One of the major advantages of
a VCSEL is its explicitly emission from the top surface.
Compared with edge emission，the unique top emission
can not only optimize the laser shape of beam，but also
significantly improve the coupling efficiency into fibers

and grating couplers. The VCSELs comprise multiplyquantum wells（QWs）active region sandwiched betweentwo highly reflective mirrors，which are epitaxial growthon a GaAs or InP substrate. Compared with GaAs-basedshort-wavelength VCSELs， long-wavelength VCSELshave attracted an increasing attention for the develop‐ment of optical interconnects，and fiber-to-the-home ap‐plications as well as technologies that are integrated withSi-photonics ［4-8］. 1 550 nm VCSELs have a low fiber at‐tenuation（due to a lower band gap），higher eye safe
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maximum limit power，lower operation voltage and theapplication in long-reach optical interconnects［9］. Howev‐er，there are many challenges that should be overcome inprevalent technology. The advantages of oxide confinedVCSELs are low voltage and high wall plug efficiency.On the other hand，there is much work that was conduct‐ed to the development of InP-based VCSELs. However，most of these endeavors dedicated to this research arelack of success. The first reason for this is the drawbackof thick DBR. The thickness of a 1 550 nm DBR is about12 μm which requires a long epitaxial time，thus a pre‐cise uniformity control of thickness and index contrastkey parameters are needed. Second，there is a narrowerspectrum bandwidth due to the smaller index differencebetween the AlxGayIn（1-x-y）As composition chosen for thatwavelength and InP. Third，the free carrier absorption inthe p-type layers in the long wavelength region is quitehigh especially for 1 550 nm. Last one but not least，there is no limited epitaxial layer，such as GaAs-basedoxide. Recently， drastic improvements have beenachieved on 1 550 nm InP-based VCSELs by finding so‐lutions to the issues mentioned. For example，Connie J.Chang-Hasanin group from University of California atBerkeley［10-12］ focus on a high contrast grating（HCGs）asa top mirror which is 2%～5% of DBR thickness and 104times reduction in volume of VCSELs. Markus C Amannteam［13-15］ have successfully designed and fabricated 1550 nm VCSELs for a high-speed operation and tunablewavelengths. In China，there are some research institutewhich focus on the wavelength range from 850 to 980 nm
［16-19］. Single-mode emission，high-speed operation，high-power generation，wavelength tuning on 980 nm are de‐scribed in the respective fields. However，VCSEL oflong-wavelength spectral regimes especially 1 550 nm aremuch less reported.In this work，we report the lasing characteristics of1550 nm VCSELs with hybrid DBRs between AlxGay⁃In（1-x-y）As/InP and SiO2/Si. VCSELs of 1550 nm wave‐length show 20 mA threshold current. Output power isaround 7 μW under CW operation at room temperature.The lasing spectrum is 1554 nm under CW operationwhich the full width at half maximum is 3 nm.
1 Device structure and fabrication

Figure 1 shows top microscope image of a fabricatedVCSEL. Wafers are grown on 2 inch Si-InP（100）sub‐strates in a multiple-wafer metal organic chemical vapordeposition（MOCVD）reactor. The bottom DBR consistsof over 45 pairs of InP and AlxGayIn（1-x-y）As lattice-matched to InP. The active region constitutes 6 straincompensated AlxGayIn（1-x-y）As/InP QWs. Above the activelayers， a p++-AlxGayIn（1-x-y）As/n++-AlxGayIn（1-x-y）As tunneljunction is grown. Carbon was used as p-type dopantsince carbon has low diffusivity compared with zinc ［20］.The bandgap of AlxGayIn（1-x-y）As in the tunnel junction ishigher than the photon energy at the lasing wavelength toavoid optical absorption. For the same purpose，the thintunnel junction is designed at a node of the standing waveof the VCSELs. After the growth of the tunnel junction，

a n-type InP layer was regrown. The whole wafer was pat‐terned with photolithography and circular mesas wereformed for blocking the current outside by proton implan‐tation. Next， anode electrodes with Ti/Pt/Au wereformed on the top side of n-type InP epitaxial layer as acontact structure to reduce the capacitance of devices.The top DBRs consist of amorphous-Si（α -Si）and SiO2evaporated by e-beam evaporation. In addition，the wa‐fer was pattered with photolithography and circular wereformed by ICP to top pad contract window. Finally，cath‐ode electrodes were formed on the bottom side of the sub‐strate with Au/Ge/Ni.

2 Results and discussion
2. 1 Current-light（I-L）characteristicsFigure 2 shows the I-L characteristics of 1550 nmVCSELs with 12 μm diameter tunnel junction aperturesat room temperature（about 20 ℃）. The threshold cur‐rent（I th）is 20 mA. Output power（Pout）increases rapid‐ly with driving current（I）above I thand the maximum out‐put power was around 7 μW under CW 60 mA.

I th is given by：
I th = Aa j th = qVa

η Iτsp
nth ≈ qVaBη I n2t exp{2g th /g1}, （1）

Fig. 1 Top microscope image of fabricated VCSEL
图1 制备的VCSEL器件照片

Fig. 2 I-L characteristics of fabricated VCSEL under CW opera‐
tion at room temperature
图 2 室温连续输出工作状态下，VCSEL 的电流-输出特性曲
线
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Aais active material area. The threshold current densitythen follow as j th. q is the elementary charge and η I is thecurrent injection efficiency accounting for lateral leakagecurrents and carrier overflow over confining barriers. Thespontaneous recombination lifetime τspdepends on thecarrier density. The term n thand n t have the meaning of athreshold carrier density and a transparency carrier densi‐ty，respectively. The active volume Va = Aada with da isactive material thickness. B is Boltzmann constant. Thethreshold gain is g th and g1 is constant. From Eq. 1 ，we
can find that I th depends on n t，Va，η I ect. In otherwords，when the numbers of quantum well in VCSEL de‐vices is the same，the DBR reflectivity required is highto achieve low threshold current and high output power.As can be seen from Fig. 3，the cavity mode is located at1 532 nm，the overall reflectance is 95%，and the reflec‐tance is 94% at 1 532 nm. It can be concluded from theactual experimental value that the threshold current is 20mA and the output power is 7 μW，indicating that the re‐flectance of DBR on both sides of the quantum well is lowin the actual value，the transmittance of the cavity modeposition is about 1%，resulting in the low output power ofthe device. Subsequently，the reflectivity of the upperand bottom DBR should be increased.

Pout is given by［21］：

Pout = ηe ℏωq (I - I th) , （2）
V (I) = V0 + IRs , （3）

where ηe is differential quantum efficiency. ℏ is Planckconstant，ℏ = 6.626 070 15 × 10-34 J•s. ω is photon fre‐quency. Rs denotes the differential series resistance.The kink voltageV0 is related to the separation of quasi-Fermi energies but can be approximated by V0 ≈ ℏω q.
ηc (I) = PoutIV = ηe ( )ℏν/q ( I - I th )

I (V0 + IRs ) . （4）
Equation 4 shows that for I>> I th the series resis‐tance is responsible for the decrease of ηc with increasingcurrent. Efficiency is maximized at the laser current

I0 = I th (1 + 1 + ξ ) with ξ = V0 I thRs . （5）
From which the maximum conversion efficiency is

obtained as
ηmax = ηe ℏνqV0

ξ

( )1 + 1 + ξ 2 = ηe ℏνqV0 fc (ξ)，（6）
Pmax (I0) = ηe (ℏν q) I th 1 + ξ . （7）

It becomes clear that obtaining maximum conversionefficiency is one of the most challenging topics increasingthe factor of ξ，namely increasing the production ofthreshold current and resistance［22］. On the other hand，differential quantum efficiency ηe is defined as the ratioof mirror loss and mirror loss plus internal loss.
ηe = τp

τp,m
≈ αm
α i + αm =

1
1 - α iLeff ln R tRb

, （8）
where τp is proton lifetime，τp，m is proton lifetime includ‐ing mirror loss. αm is mirror loss from emission throughthe top and bottom mirror. α i is internal loss. Leff is effec‐tive cavity length. R t is top mirror reflectivity. Rb is bot‐tom mirror reflectivity. As shown Eqs. 2-8，the main rea‐sons for output power are followed by：（1）The strongestincrease occurs with the horizontal electron leakage. Thisleakage current from the MQW active region into devices.In order to confine current，we can improve that buriedtunnel junction can be employed.（2）The heating fromdevice leads to a reduction of the differential quantum effi‐ciency. Heat sink TEC can be added to control devicetemperature.（3）During the epitaxial growth，the inter‐face is not ideal in the experiment process. Four times li‐thography processes before sputtering SiO2/Si DBR areused. Any particle residue in the interface after the clean‐ing process or the reflectance coatings poor quality canlead to light absorption and loss. We should strictly con‐trol the processed or adjustment processes order.

The typical I-V characteristics of devices are shownin Fig. 4. From Eq. 3，the kink voltage V0 is related tothe separation of quasi-Fermi energies but can be approx‐imated by V0 ≈ ℏω q ≈ 1.2 V. The resistance Rsfor the12-μm devices is around 25 Ω. As is shown in Fig. 3，the temperature dependence of I-V characteristics of sam‐ple is measured under CW operation. This is because the

Fig. 3 Reflection spectra and the cavity mode of the VCSEL
structure
图3 VCSEL外延结构的反射谱

Fig. 4 I-V characteristics of fabricated VCSELs under CW oper‐
ation at room temperature
图 4 所制备的 VCSEL器件在室温连续输出工作状态下的电
流-电压曲线
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current path is like structure of a half cavity. The voltageand series resistance decrease as increasing temperaturefrom Fig. 4，which is in band gap narrowing and barrierheight declining from heterojunction.
2. 2 Lasing spectraThe emission wavelength of a VCSEL is controlledby the resonator rather than the spectral position of thegain peak. For perfect alignment with emission wave‐length，we have peak gain gp = 0. Figure 5 shows spectraunder different injected current of 25，40 and 60 mA.Single fundamental transverse mode operation wasachieved for different current range. The wavelengths un‐der different injected current are 1 551 nm，1 552 nmand 1 554 nm under different injected current respective‐ly. The wavelength shows that the center reflectivityspectrum of bottom DBR，gain and the center reflectivityspectrum of top DBR are matched with each other. Themain reason of wavelength shift with different injectedcurrent is caused by Joule heat［23］，which is mainly gener‐ated in the p-doped layers. Recombination heat is gener‐ated in the quantum wells，as well as negative Thomsonheat which accounts for the capture and escape of quan‐tum-well carriers（carrier escape requires energy and itremoves heat from the lattice）. Optical absorption heat isalso strongest in the quantum wells due to absorption byholes. On the other hand，the cavity mode has red shiftwith the increase of temperature，which leads to lasingspectrum drift，mainly because the refractive index of Alx⁃GayIn（1-x-y）As material increases with the steady rise，andfinally leads to the overall reflectance red shift of the de‐vice. Since the refractive index of AlxGayIn（1-x-y）As materi‐al changes very little with the temperature，the spectraldrift rate is also very small. The full width at half maxi‐mum（FWHM）of lasing spectrum is about 3 nm under 60mA current injected.

3 Conclusions
In summary，the lasing operation of 1550 nm VC‐SELs has been demonstrated. The electrical properties ofVCSEL were studied using I-V charactics and I-P charac‐tics measurents. The threshold current was 20 mA andthe maximum output power was around 7 μW under CW60 mA. The wavelength of lasing spectra is 1 554 nmand the FWHM is 3 nm. We analyse the threshold cur‐

rent and output power from both theory and experiments.We believe that InP-based VCSELs can be strong candi‐dates for low-cost and long-reach optical interconnects.
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